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Abstract 
Astronauts show degraded balance control immediately after spaceflight. To assess this change, astronauts' ability to 
maintain a fixed stance under several challenging stimuli on a movable platform is quantified by "equilibrium" scores 
(EQs) on a scale of 0 to 100, where 100 represents perfect control (sway angle of 0) and 0 represents data loss where no 
sway angle is observed because the subject has to be restrained from falling. By comparing post- to pre-flight EQs for 
actual astronauts vs. controls, we built a classifier for deciding when an astronaut has recovered. For the main EQ of 
interest, this classifier perfectly separated the groups in our relatively small training data set; hence standard techniques 
for evaluating ROC area uncertainty were not applicable. The problem of predicting future performance of the classifier 
was addressed by simulation after modeling P(EQ = 0) in terms of a latent EQ-like beta-distributed random variable. 
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1.  Introduction 
 
A practical concern in planning long-term space missions is that astronauts show degraded balance control for a period 
of time after returning to Earth [1]. As a consequence, in early post-flight days, astronauts may be at increased risk of 
falls during normal activities of daily living. Therefore, for a period of time after flight, they are generally cautioned not 
to attempt activities requiring good balance control (e.g., contact sports and climbing ladders), and they are restricted 
from performing more dangerous activities requiring good sensory-motor integration skills (e.g., driving vehicles and 
operating complex equipment). Although balance control is usually regained within a few days of landing, the recovery 
trend can vary considerably with mission duration, previous space flight experience, and non-specific individual 
characteristics.. There is, therefore, a need for diagnostic methodologies that can readily assess whether an astronaut 
has recovered sufficiently to return to duty.  
 
Computerized dynamic posturography (CDP) [2] has been long used to monitor recovery of balance control in 
astronauts after space flight. CDP evaluates the ability of a subject to maintain a stable upright stance during 20 sec. 
trials of several challenging stimuli. Its utility as a diagnostic measure for assessing readiness for return-to-duty is 
somewhat limited however because of the length of time required to administer the entire test battery. To reduce this 
time, we sought to determine whether some subset of the CDP stimuli could be sufficient to distinguish between 
normal and impaired sensory-motor function in returning astronauts. Here we report performance aspects of three 
methods for classifying a set of longitudinal outcomes of one particular CDP protocol as being representative of either 
a recovered or a non-recovered subject. Original data and classification results were obtained from an experiment 
involving astronauts and matched control subjects. However to evaluate future predicted performance and assess the 
effects of sampling variability, we made use of simulated CDP outcomes based on an informative missing data model. 
 
1.1 Experiment Design 
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In the classification experiment, one stimulus condition was selected from full CDP test batteries administered to 11 
astronauts and 11 matched (by gender and age) non-flying control subjects before and after flight. In CDP, performance 
is quantified by "equilibrium" scores (EQ), transformed maximum postural sway angles scaled from 0 to 100, where 
100 represents perfect control (no sway) and 0 represents a theoretical maximum sway angle of 12.5° that can be 
achieved without falling or moving one's feet. If a subject moves his/her feet or has to be restrained from falling, no 
maximum sway angle is actually observed; instead a score of zero is arbitrarily assigned. The CDP condition used for 
the classification experiment (eyes-closed, unstable foot support surface, dynamic pitch-plane head movements) was 
repeated twice per session. For future reference, the two pre-flight scores are designated as y1 and y2, while the post-
flight scores are designated as y3 and y4. Time spacing between pre- and post- “flight” sessions for each control subject 
was matched to that experienced by the corresponding astronaut. All subjects were participating in CDP testing for the 
first time; hence any learning effects should have been similar for both groups. None reported any history of balance or 
vestibular abnormalities. Screening was also conducted before trial sessions to ensure that no toxic substances had been 
taken, there was no evidence of new onset illness and that there had not been any nausea or motion-sickness. All 
subject selection criteria and experimental procedures were approved by Johnson Space Center Committee for 
Protecting of Human Subjects, and all subjects provided informed consent prior to inclusion. 
 
1.2 Assessing the Ability to Diagnose Recovery 
By assuming that no astronauts had recovered when CDP testing was administered on landing day (2-4 hrs after 
wheels-stop), and that control subjects were representative of a population of “recovered” astronauts, we built three 
types of classifiers (linear, conditional linear and marginal likelihood) to separate the groups on the basis of their EQ 
scores. In an operational setting, one of these classifiers would be used in the days following landing to help decide 
whether an astronaut has recovered balance control sufficiently to safely return to normal duties and activities.  
 
Predicted diagnostic performance of each classifier depends on both the sampling distribution of parameter estimates 
obtained in training the classifier as well as the distribution of future input data. With the small amount of data 
available, asymptotic methods for assessing standard errors of the classifier parameters or of sensitivity and specificity 
estimates are not reliable. Indeed, some of these methods completely break down when there is perfect separation 
between the groups in the sample data (as happened in our case). Therefore, to characterize performance, we simulated 
EQ scores for the current design, trained each classifier on a data set sized similarly to the study, and then applied the 
estimated classifier to simulated future EQ results. This process was repeated to build an empirical distribution of 
performance aspects for each of the classification methods. 
 
1.3 Initial Results 
The complete experimental data are given in Table 1, where astronauts are coded “1” in the column entitled “Ast”. 
Initially, we used logistic regression with a dummy variable indicating control subjects (i.e. the “recovered” group) to 
construct a linear classifier based on averages prey = (y1 + y2)/2 and posty = (y3 + y4)/2 of the pre- and post-flight EQ 
scores, respectively. In a proper logistic regression setting, we would choose the classifier to be of the form: decide 
“recovered” if c1 prey + c2 posty > A; where the estimated probability of a subject belonging to the “recovered” group is 
exp(c1 prey + c2 posty – A)/[1 + exp(c1 prey + c2 posty – A)]. In other words, the classifier would decide “recovered” if the 
estimated probability of a subject belonging to the “recovered” group exceeds 0.5.  However, because there was 
complete separation of the groups in ( prey , posty ) –space , the likelihood as a function of c1, c2, and Α  was unbounded 

and estimates of c1, c2, and Α as implemented in Stata statistical software [3] did not converge. Nevertheless, relative 
estimates of these parameters were converging as iteration proceeded. Since relative values of c1, c2, and Α  are 
sufficient to define a classifier, we imposed c1 = –1 and took c2 = /  and A = Nc2− Nc1

NA− / , where ,  and ANc1
Nc1

Nc2− N 
were the N-th-iterate estimates of c1, c2, and Α. The particular software used terminated estimation after N = 22.  
 
Results of the preceding calculations gave c1 = -1.0, c2 = 0.929, and A = 26.4. So using this classifier, a NASA flight 
surgeon would be advised that an astronaut had recovered if 0.929 times the astronaut’s post-flight average EQ score 
exceeded the pre-flight average score by at least 26.4. Figure 1 shows this classifier and the original data in ( prey , posty ) 
–space. But how well can we expect this classifier to perform in future application? With perfect separation, likelihood-
based standard errors for the parameter values cannot be evaluated. Furthermore, how can we account for the small size 
of the training data in assessing future performance? It can be seen from Figure 1 that even a small change in some of 
the data values would have changed the performance of the classifier to less than perfect. To address these issues, we 
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modeled the EQ scores and implemented a parametric bootstrap. Section 2 describes the data model and its estimation. 
The parametric bootstrap simulation and alternatives to the linear classifier are presented in Section 3. Finally bootstrap 
accuracy assessment results and an overall discussion follow in Sections 4 and 5. 
 

Table 1: Training Data 
    Pre-flight Post-flight 

Subject Ast y1 y2 y3 y4

1 0 45 43 42 41 
2 0 33 65 68 80 
3 0 28 73 56 73 
4 0 63 69 72 66 
5 0 41 25 29 0 
6 0 35 56 69 59 
7 0 48 37 41 51 
8 0 74 71 51 66 
9 0 44 58 27 38 

10 0 84 86 70 73 
11 0 71 71 77 76 
12 1 56 71 26 39 
13 1 57 49 0 0 
14 1 63 78 0 29 
15 1 73 77 0 0 
16 1 83 75 0 0 
17 1 68 65 0 0 
18 1 57 61 0 0 
19 1 60 66 36 0 
20 1 72 64 0 0 
21 1 67 40 0 32 
22 1 72 55 68 0 

 

3 



0
20

40
60

80
po

st
-fl

ig
ht

 a
ve

.

20 40 60 80
pre-flight ave.

recovered (CON) non-recovered (AST)

SOT 5M Linear Classifier

 
Figure 1: Linear classifier estimated from original experiment data.  
 
 

2. Modeling EQ Scores 
 
2.1 Missing Data Model  
In order to accomplish the bootstrap analysis, it was necessary to formulate and estimate a complete structural model 
for EQ scores that includes allowance for no actual maximum sway angle being observed when a subject falls, as well 
as repeated observations pertaining to the same subject. Following [4], we modeled the marginal distribution of y = 
EQ/100 as equal to  y*, a Beta-distributed normalized "latent" score when a fall does not occur and equal to zero when 
a fall does occur. The probability of a fall; i. e. P(y = 0) is further modeled as conditional on y*. In particular we used 
the fall model 
 

P(fall | y*) = (1 – y*)θ for some θ  > 0.     (1) 
 
In other words, the lower the latent score, the more likely it is that a fall would occur. As y* approaches zero, a fall 
becomes almost a certainty; conversely as y* approaches one (perfect control), the probability of a fall becomes 
negligible.  
 
2.2 Longitudinal Model 
To account for repeated observations from the same subject, the model for y* incorporates random effects as well as 
fixed effects explaining the effect of spaceflight. More specifically, assume y* ~ β(p, q); i.e. y*  has density 
 

11
)()(
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qp yyyf β ,      (2) 

 
where the log mean, ζ = log  p/(p+ q )  is modeled by 
 

ζ = ζ0 + ζ1Ipost(A) + u(1)      (3) 
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where ζ0 and ζ1 are fixed parameters, u(1) is a random subject effect distributed N(0, ) and I2

1σ post(A) indicates whether 
the observation was taken post-flight for an astronaut (Ipost(A) = 1); otherwise Ipost(A) = 0. In addition, ϕ = log (p + q) 
also incorporates random effects: 
 

ϕ = ϕ0 + u(2)       (4) 
 
where u(2) is another random subject effect distributed N(0, ). Finally, θ, the parameter affecting the conditional 
probability of a fall given y*, follows a log-linear model but without random effects: 

2
2σ

 
log θ = τ0  + τ1 Ipost(A)      (5) 

 
With this model, the distribution of y* varies over subjects; being the same pre- and post-flight for a given control 
subject, but changing after flight for a given astronaut subject. 
 
2.3 Estimation 
From (1) and (2), it can be seen that the marginal likelihood of y for a subject with random effects u = (u(1), u(2))′ is 
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where fβ(y| u) is the same as (2), except that the parameters p and q are altered by (4) and (5); and where the 
unconditional  probability of a fall  for that subject is 
 

∫ −=
1

0
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θ       (7) 

 
Preliminary estimates of ζ0, ζ1, τ0, and τ1 were obtained by maximizing the “pseudo”-likelihood 
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which would be the actual likelihood if all random effects were zero and all observations were independent. These 
estimates were then used to form prior distributions for subsequent Bayesian estimation using WINBUGS software [5]. 
Final estimates of all parameters, including and were taken as posterior medians.  2
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3. Simulation 

 
Using the model described by (1) - (5) with the above parameter estimates, we generated 500 pairs of training and 
validation data sets, each with the same design  (11 astronauts, 11 controls, pre-flight/post-flight, 2 replicates) as the 
actual experiment. For each pair, we trained each of three classifiers on the first (“training” ) set and then applied the 
estimated classifier to the second (“validation”) set. The three classifiers consisted of the linear classifier (L), estimated 
by logistic regression as described in Sec. 1.3, and two alternatives – denoted “conditional linear” (CL) and “pseudo-
likelihood ratio” (PLR).  The CL-classifier was the same as the L-classifier except for the added rule that any post-
flight fall automatically classified the subject as “non-recovered”. This rule puts more penalty on a post-flight fall than 
would averaging it in as a value of zero. Unlike L and CL, the PLR-classifier utilizes the 4 distinct observations y1 – y4 
for an individual by constructing the pseudo-likelihood (8), first assuming the individual was “recovered” (Ipost(A) = 0), 
and then assuming “non-recovered” (Ipost(A) = 1). The classifier would then decide “recovered” if the former pseudo-
likelihood exceeded the latter. Classification results were then aggregated over the 500 validation data sets and various 
aspects of performance were compared. 
 

4. Results 
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4.1 Parameter Estimates 
Table 2 shows estimates(posterior medians) and the 95% Bayes credible interval for the EQ model parameters ζ0, ζ1, 
ϕ0, τ1, τ2,  σ1, and σ2 as described in (1) – (5). Note that for astronauts post-flight, the mean latent EQ score is estimated 
to be considerably lower (ζ1 = -1.24). For example, using the estimates in Table 2, and applying (3) with u(1) = 0 (a 
“typical” astronaut),  the mean latent EQ score is p/(p + q) = 0.31 post-flight as opposed to 0.61 prior to flight.  Also,  
from (2) and (7), the probability of a fall for a typical astronaut post-flight is estimated at 0.73, as compared with 0.015, 
pre-flight. 
 

Table 2: EQ Model Parameter Estimation Results 
Parameter Estimate1 95% low2 95% upper2

ζ0 0.433 0.154 0.707 
ζ1 -1.238 -1.692 -0.734 
φ0 3.101 2.517 3.695 
τ0 2.182 1.481 3.377 
τ1 -2.517 -4.101 -1.362 
σ1 0.530 0.387 0.736 
σ2 0.690 0.399 1.135 

1Posterior median (10,000 MCMC draws ) 
2Bayes credible interval  
 
4.2 Model Check  
Before proceeding with the classification simulation described in Sec. 3, we first checked the model by using the above 
point estimates to simulate 500 data sets similar to the actual one and then compared various statistics between the 
actual data and averaged over the 500 simulated sets. Table 3 contains shows these comparisons for two types of 
statistics: averages and ANOVA mean squares. Values in the column labelled  “Actual” are calculated averaged from 
the actual data.  Values in the column labelled “Simulated” are averages over the 500 simulated data sets of quantities 
calculated for each set. The ANOVA means squares were calculated for comparison purposes only and were not meant 
for statistical inference on group, phase, effects, etc. Here “phase” means pre-flight vs. post-flight. As can be seen from 
Table 3, there is good agreement between the actual and simulated data except for the group mean square statistic. This 
quantity reflects the difference in EQ scores between astronauts and controls, averaged over both pre- and in-flight. 
Low values of this mean square tend to occur if the average pre-flight score for the astronaut group happens to be 
considerably higher than it is for the control group. Then the negative effect of flight is partially cancelled and the 
overall means don’t differ by too much. The group mean square was less than 0.702 in about 13% of the simulated 
training sets; thus an observed value that low is not overly inconsistent with the model. 
 

Table 3: Comparison between actual and simulated data 
Criterion Actual Simulated (500 sets) 
Averages   
EQ/100: ast(post) 0.105 0.096 
EQ/100: con & ast(pre) 0.587 0.602 
P(fall): ast(post) 0.727 0.759 
P(fall): con & ast(pre) 0.0152 0.0091 
ANOVA Mean 
Squares   
group (ast or con) 0.702 1.48 
sub/group 0.0624 0.063 
phase 1.62 1.43 
phase*group 1.65 1.43 
phase*sub/group 0.0261 0.02 
residual 0.0178 0.0175 
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4.3 Classification Assessment 
The classification performances of each classifier on the original data and on the simulated verification data are 
summarized in Tables 4 and 5, respectively. As reported above, there was perfect separation of groups in the original 
data for the linear classifier (L), but one control subject had a fall in one of the post-flight trials, hence that subject was 
classified as not recovered by the conditional linear classifier (CL). The pseudo-likelihood ratio classifier (PLR) was 
slightly more conservative, missing missed two control subjects (Table 4). 
 

Table 4: Classification Results on Original Data 
  L-Classifier  
  ast con  

AST 11 0  Actual 
CON 0 11  

     
     
  CL-Classifier  
  ast con  

AST 11 0  Actual 
CON 1 10  

     
     
  PLR-Classifier  
  ast con  

AST 11 0  Actual 
CON 2 9  

 
Table 5 shows corresponding results from the simulation. Entries in this table are average frequencies over the 500 
classified data sets, each the same size as the original. Note that for the linear classifier an average of almost 2.5 of 11 
astronauts were erroneously classified as “recovered” – a serious error. These results suggest that the perfect separation 
on the original data was somewhat fortuitous – in fact this happened in 98 of the 500 simulated studies. By contrast, 
adding the simple rule of deciding “not recovered” if there is a post-flight fall considerably reduced the error rate. The 
pseudo-likelihood classifier performed about as well as the conditional linear – so based on these results, the 
conditional linear classifier, being much easier to implement, would be the rule of choice. 
 
Table 5: Average Classification Results on Simulated Data 
  L-Classifier   
  ast con   

AST 10.73 0.27   Actual 
CON 2.47 8.53   

      
      
  CL-Classifier   
  ast con   

AST 10.64 0.36   Actual 
CON 0.51 10.49   

      
      
  PLR-Classifier   
  ast con   

AST 10.43 0.57   Actual 
CON 0.51 10.49   

 

7 



We also looked at average areas under ROC curves  for each classifier, obtained by calculating sensitivity and 
specificity as functions of the threshold A for each of the 500 simulated validation data sets. Results (Table 6) again 
suggest that the conditional linear classifier is a good choice. 
 

Table 6: ROC areas 

Classifier 
ROC 
area 

Linear 0.921 
Conditional Linear 0.966 
Pseudo-Likelihood 
Ratio 0.976 

  
 
5.0 Discussion/Conclusions 
An important conclusion reached from the simulation is that the perfect classification performance of the linear 
classifier on the original data was somewhat fortuitous. As can be seen in Fig. 1, slight “migration” of some of the data 
points in  ( prey , posty ) –space could have resulted in 2 or 3 errors. In fact, perfect separation in ( prey , posty ) –space 
occurred in 98 of the 500 simulated training sets. By contrast, adding the simple rule of deciding “not recovered” if 
there is a post-flight fall considerably reduced the error rate. The pseudo-likelihood classifier performed about as well 
as the conditional linear – so based on these results, the conditional linear classifier, being much easier to implement, 
would be the rule of choice. This finding is also supported by the ROC areas in Table 6. Because of the complexity of 
the EQ data model, with log-linear random subject effects, Bayesian methods were used to estimate the model 
parameters which in turn enabled us to simulate realistic EQ data. Because of the relatively small sample size (22 
subjects), the resulting parameter estimates were somewhat dependent on prior distributions. To control this 
dependence we constructed realistic centers for priors by maximizing the “pseudo”-likelihood (8) and using robust 
standard errors to define spread.  A final sanity check was made by comparing statistics calculated form the actual and 
simulated data. 
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